If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q^2+20=4^2+10q+13000
We move all terms to the left:
q^2+20-(4^2+10q+13000)=0
We get rid of parentheses
q^2-10q-13000+20-4^2=0
We add all the numbers together, and all the variables
q^2-10q-12996=0
a = 1; b = -10; c = -12996;
Δ = b2-4ac
Δ = -102-4·1·(-12996)
Δ = 52084
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{52084}=\sqrt{4*13021}=\sqrt{4}*\sqrt{13021}=2\sqrt{13021}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{13021}}{2*1}=\frac{10-2\sqrt{13021}}{2} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{13021}}{2*1}=\frac{10+2\sqrt{13021}}{2} $
| -7-5(8x-1)=-162 | | 7a-5a=-6 | | (X-7)(x-7)-(1+x)(1+x)=2(3x-4) | | (x-9)+(5x+3)=180 | | 0.18(x-1)=0.24(x-3) | | .5+3x=9 | | 200=6+2x | | 98=2+8(5n+2) | | 200=2(3)+2x | | -3=-8+x/2 | | 210=14(x+14) | | 2r-(1-8r)=-81 | | 2x+3=2*(x-4) | | x^2-150x+50000=0 | | t/2.1=6.1/1.1 | | c+4=2c-3 | | |5x-3|=6x+1 | | 2(3^3x)=31250 | | 6u-1+2u+5u-9-234=999 | | (600+x)+x=2000 | | 3x/5x+2=-3 | | 3(2+x)=3x+36 | | a/2+(3a)/3=3/2 | | 13=10+a/5 | | 2-(y+1)(y+1)=5-3(y-5y-9)-y2 | | 4/9x9/10=2/5 | | (p+5)=(p-4) | | p+5=p-4 | | -2-k/4=-7 | | f/2+-3=1 | | k/3+-6=-3 | | r/5-10=8 |